Normed Ordered and -Metric Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normed Ordered and E-Metric Spaces

In 2007, Haung and Zhang introduced the notion of cone metric spaces. In this paper, we define an ordered space E, and we discuss some properties and examples. Also, normed ordered space is introduced. We recall properties of R, and we discuss their extension to E. We introduce the notion of E-metric spaces and characterize cone metric space. Afterwards, we get generalizations of notions of con...

متن کامل

Basic Properties of Metric and Normed Spaces

1 Definitions and Examples 1.1 Metric and Normed Spaces Definition 1.1. A metric space is a pair (X, d), where X is a set and d is a function from X ×X to R such that the following conditions hold for every x, y, z ∈ X. 1. Non-negativity: d(x, y) ≥ 0. 2. Symmetry: d(x, y) = d(y, x). 3. Triangle inequality: d(x, y) + d(y, z) ≥ d(x, y) . 4. d(x, y) = 0 if and only if x = y. Elements of X are call...

متن کامل

A Metric Characterization of Normed Linear Spaces

Let X be a linear space over a field K = R or C, equipped with a metric ρ. It is proved that ρ is induced by a norm provided it is translation invariant, real scalar “separately” continuous, such that every 1-dimensional subspace of X is isometric to K in its natural metric, and (in the complex case) ρ(x, y) = ρ(ix, iy) for any x, y ∈ X.

متن کامل

Ball transitive ordered metric spaces

0. Introduction. If (X,≤) is a partially ordered set and A ⊆ X, then the decreasing hull d(A) of A in X is defined to be d(A) = {x ∈ X : x ≤ a for some a ∈ A}. If the poset X is not understood from the context, we may write dX(A). A subset A ⊆ X is a decreasing set if A = d(A). The intersection or union of any collection of decreasing sets in X is again a decreasing set in X. The increasing hul...

متن کامل

Some Results on TVS-cone Normed Spaces and Algebraic Cone Metric Spaces

In this paper we introduce the cone bounded linear mapping and demonstrate a proof to show that the cone norm is continuous. Among other things, we prove the open mapping theorem and the closed graph theorem in TVS-cone normed spaces. We also show that under some restrictions on the cone, two cone norms are equivalent if and only if the topologies induced by them are the same. In the sequel, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2012

ISSN: 0161-1712,1687-0425

DOI: 10.1155/2012/272137